
PACT Submission #043– Confidential Draft – Do Not Distribute!!

Massively Parallel Skyline Computation For Processing-In-Memory Architectures

Abstract

Processing-In-Memory (PIM) is an increasingly popular
architecture aimed at addressing the ‘memory wall’ crisis
by prioritizing the integration of processors within DRAM.
It promotes low data access latency, high bandwidth, mas-
sive parallelism, and low power consumption. The skyline
operator is a known primitive used to identify those multi-
dimensional points offering optimal trade-offs within a given
dataset. For large multidimensional dataset, calculating the
skyline is extensively compute and data intensive. Although,
PIM systems present opportunities to mitigate this cost, their
execution model relies on all processors operating in isolation
with minimal data exchange. This prohibits direct application
of known skyline optimizations which are inherently sequen-
tial, creating dependencies and large intermediate results that
limit the maximum parallelism, throughput, and require an
expensive merging phase.

In this work, we address these challenges by introducing the
first skyline algorithm for PIM architectures, called DSky. It is
designed to be massively parallel and throughput efficient by
leveraging a novel work assignment strategy that emphasizes
load balancing. Our experiments demonstrate that it outper-
forms the state-of-the-art algorithms for CPUs and GPUs, in
most cases. DSky achieves 2× to 14× higher throughput com-
pared to the state-of-the-art solutions on competing CPU and
GPU architectures. Furthermore, we showcase DSky’s good
scaling properties which are intertwined with PIM’s ability to
allocate resources with minimal added cost. In addition, we
showcase an order of magnitude better energy consumption
compared to CPUs and GPUs. Despite our focus on the sky-
line problem, our work provides also the skeleton for a general
parallel framework suitable for developing other important
data processing applications on PIM systems.

1. Introduction
The skyline computation is crucial for multi-criteria analysis
on large dataset. Initially introduced as a new relational al-
gebra operator [9], skyline has evolved beyond its original
specification due to its close resemblance to Pareto Optimality
to support applications ranging from data exploration [10],
database preference queries [4], route planning [19], multi-
objective optimization [32], web information [28] and user
recommendation systems [6]. Computing the skyline requires
identifying all the points from a given dataset D that are not
dominated by any other point within it. A point p dominates
another point q, if it is equal or better on all dimensions and
there exists at least one dimension for which it is strictly better.
In order to identify the dominance relationship between two

CPU GPU PIM
Cores (c) 10 3584 2048
Bandwidth (GB/s) 68 480 4096
Power (W/c) 10.5 0.17 0.04

Table 1: Single node specification comparison for CPU (Xeon
E5-2650), GPU (TITAN X) and PIM (UPMEM) architectures.

points, it is common to perform a Dominance Test (DT) [11]
by comparing all their attributes/dimensions.

When the input dataset is large and multidimensional, com-
puting the skyline is costly, since in theory each unprocessed
point needs to be compared against all the existing skyline
points. In order to reduce this cost, most sequential algorithms
rely on established optimization techniques such as in-order
processing [12] and space partitioning [9], both of which aim
at reducing the total number of point-to-point comparisons.

Modern processors leverage the integration of many com-
pute cores on a single chip to mitigate the effects of processing
large dataset. This trend necessitates the redesign of popular
skyline algorithms to take advantage of the additional hard-
ware. Recent work on skyline computation relies on modern
parallel platforms such as multi-core CPUs [11] and many-
core GPUs [7]. These solutions attempt to address the unprece-
dented challenges associated with maintaining algorithmic
efficiency while maximizing throughput. Despite these efforts,
the widening gap between memory and processor speed con-
tributes to a high execution time, as the maximum attainable
throughput is constrained by the data movement overhead that
is exacerbated by the low computation to data movement ratio
evident in the core (i.e. dominance test, Section 4) skyline
computation.

Processing-In-Memory (PIM) architectures [2, 13, 16, 17,
20, 23, 27, 29, 30, 34] present a viable alternative for ad-
dressing this bottleneck leveraging on many processing cores
that are embedded into DRAM. Moving processing closer to
where data reside offers many advantages including but not
limited to higher processing throughput, lower power con-
sumption and increased scalability for well designed parallel
algorithms (Table 1). In this paper we rely on UPMEM’s archi-
tecture [20] , a commercially available PIM implementation
that incorporates several of the aforementioned characteristics.
Our skyline implementation presents a practical use case, that
captures the important challenges associated with designing
complex data processing algorithms using the PIM program-
ming model. UPMEM’s architectural implementation follows
closely the fundamental characteristics of previous PIM sys-
tems [2, 13, 16, 17, 20, 23, 27, 29, 30, 34], offering in addition
an FPGA-based testing environment [1].

Computing the skyline using a PIM co-processor comes

with its own set of non-trivial challenges, related to both archi-
tectural and algorithmic limitations. Our goal is to identify and
overcome these challenges through the design of a massively
parallel skyline algorithm, that is optimized for PIM systems
and adheres to the computational efficiency and throughput
constraints established on competing architectures. Our con-
tributions are summarized below:
• We outline the challenges associated with developing an

efficient skyline algorithm on PIM architectures (Sec-
tions 3, 5.1, 5.2).

• We propose a nontrivial assignment strategy suitable for bal-
ancing the expected skyline workload amongst all available
PIM processors (Section 5.3).

• We present the first massively parallel skyline algorithm
(i.e. DSky), optimized for established PIM architectures
(Section 5.4).
• We provide a detailed complexity analysis, proving that

our algorithm performs approximately the same amount of
parallel work, as in the sequential case (Section 5.4).

• We successfully incorporate important optimizations, that
help maintain algorithmic efficiency without reducing the
maximum attainable throughput (Section 5.4.1).

• Our experimental evaluation demonstrates 2× to 14×
higher throughput (Section 6.5), good scalability (Sec-
tion 6.6), and an order of magnitude better energy con-
sumption (Section 6.7) compared to CPUs and GPUs.
Although this work deals explicitly with the skyline prob-

lem, it also presents the skeleton of a general parallel frame-
work for PIM architectures upon which other data intensive
applications can be developed. This can be achieved by a
small adaptation of our proposed processing stages, namely:
data partitioning (Section 5.3), local batch processing (Sec-
tion 5.4) and global intermediate result merging with emphasis
on masking communication latency (Section 5.4).

2. Related Work
The skyline operator was first introduced by Borzsony et
al. [9], who also proposed a brute-force algorithm known as
Block Nested Loop (BNL) to compute it. Sort-Filter-Skyline
(SFS) [12] relied on topological sorting to choose a processing
order, that maximizes pruning and reduces the overall work
associated with computing the skyline set. Related variants
such as LESS [15] and SALSA [5] proposed the use of opti-
mizations like pruning while sorting the data or determining
when to stop early.

Sort-based solutions are optimized towards maximizing
dominance and reducing the overall work by half. However,
on certain distributions where the majority of points are incom-
parable [22], they are proven to be less effective. In contrast,
space partitioning strategies [22] have been proven to perform
better at identifying incomparability.

The BSkyTree [21] algorithm facilitates index-free partition-
ing by using a single pivot point. This point is calculated
iteratively during processing through the use of a heuristic that

Cardinality

Ti
m
e(
s)

Naïve DSky

𝟐𝟐𝟕 𝟐𝟐𝟖 𝟐𝟐𝟗

107

105

103

101

Figure 1: Runtime snapshot for 16 dimension skyline.
aims at achieving a balance between maximizing incompara-
bility and dominance. BSkyTree is the current state-of-the-art
sequential algorithm for computing the skyline regardless of
the dataset distribution.

Despite their proven usefulness, previous optimizations can-
not be easily adapted on modern parallel platforms. Related
research concentrated mainly on developing parallel skyline
algorithms that are able to maintain the same level of effi-
ciency as their sequential counterparts. The PSkyline algo-
rithm [25] is based on the Branch & Bound Skyline (BBS) and
exploits multi-core architectures to improve performance of
the sequential BBS. For data distributions that are more chal-
lenging to process, it creates large intermediate results that re-
quire merging which causes a noticeable drop in performance.
BSkyTree-P [21] is a parallel variant of the regular BSkyTree al-
gorithm. Although, generally more robust on challenging data
distributions, BSkyTree-P is also severely restricted during the
merging of intermediate results, an operation that entails lower
parallelism.

The current state-of-the-art multi-core algorithm is Hy-
brid [11] and is based on blocked processing, an idea used
extensively for a variety of CPU-based applications to achieve
good cache locality. Sorting based on a monotone function
is used to reduce the total workload by half. For more chal-
lenging distributions, the algorithm employs a simple space
partitioning mechanism, using cheap filter tests which effec-
tively reduce the cost for identifying incomparable points.
Hybrid is specifically optimized for multi-core platforms, the
performance of which depends heavily on cache size and mem-
ory bandwidth. Data distributions that generate an arbitrarily
large skyline limit processing performance. Therefore, multi-
core CPUs are limited when it comes to large scale skyline
computation.

Accelerators present the most popular solution when dealing
with data parallel applications such as computing the skyline
set. Previous solutions include using GPUs [7] or FPGAs [33].
The FPGA solution relies on streaming to implement a variant
of BNL. Although, it showcases better performance compared
to an equivalent software solution, it is far from the efficiency
achieved by Hybrid. On GPUs, the current state-of-the-art
algorithm is SkyAlign [7]; it aims at achieving work-efficiency
through the use of a data structure that closely resembles
a quad tree. SkyAlign strives towards reducing the overall
workload at the expense of lower throughput that is caused
by excessive thread divergence. Furthermore, load balancing
issues and irregular data accesses coupled with restrictions in

2

Figure 2: UPMEM’s PIM Architecture Overview
memory size and bandwidth result in significant performance
degradation when processing large dataset.

Our solution is based on PIM architectures which rely on
integrating a large collection of processors in DRAM. This
concept offers higher bandwidth, lower latency and massive
parallelism. In short, it is perfectly tailored for computing the
skyline, a data intensive application. In UPMEM’s PIM archi-
tecture, each processor is isolated having access only to their
local memory. This restriction makes previously proposed
parallel solutions and their optimizations nontrivial to apply.
In fact, our initial attempts to directly apply optimizations used
in the state-of-the-art CPU and GPU solutions on UPMEM’s
PIM architecture, resulted in noticeable inferior performance
(Figure 1). We attribute this behavior to low parallelism, un-
balanced workload assignment and a high communication cost.
In the following sections, we discuss these challenges in de-
tail and describe how to design a parallel skyline algorithm
suitable for this newly introduced architecture.

3. Architecture Overview & Challenges
UPMEM’s Processing-In-Memory (PIM) technology pro-
motes integration of processing elements within the memory
banks of DRAM modules. UPMEM’s programming model
assumes a host processor (CPU), which acts as an orchestra-
tor performing read/write operations directly to each memory
module. Once the required data is in-place, the host may initi-
ate any number of transformations to be performed on the data
using the embedded co-processors. This data-centric model
favors the execution of fine grained data-parallel tasks [20].
Figure 2 illustrates the UPMEM’s PIM architecture.

A 16 GBs UPMEM DIMM contains 256 embedded proces-
sors called Data Processing Units (DPUs). Depending on the
number of DIMMs, it is possible to have hundreds of DPUs
operating in parallel. Each one owns 64 MBs which are part of
the DRAM, referred to as Main RAM(MRAM). The UPMEM
DPU is a triadic RISC processor with 24 32-bits registers
per thread. The DPU processors are highly multi-threaded,
supporting a maximum of 24 threads. Fast context switch-
ing allows for effective masking of memory access latency1.

1Switching is performed at every clock cycle between threads

Dedicated Instruction RAM (IRAM) allows for individual
DPUs to execute their own program as initiated by the host.
Additionally, each DPU has access to a fast working mem-
ory (64 KB) called Work RAM (WRAM), which is used as a
cache/scratchpad memory during processing and is globally
accessible from all active threads running on the same DPU.
This memory can be used to transfer blocks of data from the
MRAM and is managed explicitly by the application.

From a programing point of view, two different implementa-
tions must be specified: (1) the host program that will dispatch
the data to the co-processors’ memory, sends commands, and
retrieves the results, and (2) the DPU program/kernel that
will specify any transformations that need to be performed on
the data stored in memory. The UPMEM architecture offers
several benefits over conventional multi-core chips including
but not limited to increased bandwidth, low latency and mas-
sive parallelism. For a continuously growing dataset, it can
offer additional memory capacity and proportional process-
ing throughput since new DRAM modules can be added as
needed.

PIM systems promote a data-centric processing model [14]
that offers the potential to improve performance for many data
parallel applications. However, this technology is rather an
enabler than a solution, especially in the context of comput-
ing the skyline. The best practices established for CPU- or
GPU-centric processing are not directly applicable to PIM
systems [30]. For example, in-order processing, although use-
ful for reducing complexity, creates dependencies that limit
parallelism and subsequently lower throughput. Furthermore,
relying on globally accessible space partitioning data struc-
tures [11], results in excessive communication with the host
CPU nullifying any benefits offered by PIM systems.

Although PIM architectures resemble a distributed system,
they are far from being one since they do not allow for direct
communication between DPUs (i.e. slave-nodes). For this
reason, algorithms relying on the MapReduce framework [26]
are not directly applicable since they will involve excessive
bookkeeping to coordinate execution and necessary data ex-
change for each DPU. Additionally, the MapReduce frame-
work involves only a few stages of computation (i.e. chained
map-reduce transformations) which may not be enough to ef-
fectively mask communication latency when the intermediate
results between local skyline computations are prohibitively
large. Despite these limitations, we can still rely on Bulk Syn-
chronous Processing (BSP) to design our algorithm, giving
greater emphasis on good partitioning strategies that provide
opportunities to mask communication latency and achieve load
balancing. The most prominent solutions in that field include
the work of Vlachou et al. [31] and Kø̈hler et al. [18]. Both
advocate towards partitioning the dataset using each points’
hyperspherical coordinates. Although, this methodology is
promising, it does not perform well on high dimensional data
(i.e. d > 8), because it creates large local skylines, resulting
in a single expensive merging phase [24]. Additionally, calcu-

3

50

150

250

350

0 2 4 6 8 10

P
ri

ce
 (

$
)

Distance (km)

Skyline Points
Dominated Points

Figure 3: Skyline set on toy dataset (hotel price vs distance).
lating each points’ hyperspherical coordinates is a computa-
tionally expensive step [18]. For this reasons, we purposefully
avoid using the aforementioned partitioning schemes. Instead,
we present a simpler partitioning scheme which emphasizes
load balancing and masking communication latency during
the merging of all intermediate results.

4. Skyline Definitions
We proceed with the formal mathematical definition of the sky-
line operator. Let D be a set of d-dimensional points such that
p ∈D and p[i] ∈R, ∀i ∈ [0,d−1]. The concept of dominance
between two points is used to identify those that are part of the
skyline set. As mentioned, a point p dominates a point q, if it
has “better" or equal value for all dimensions and there exists
at least one dimension where its value is strictly “better". The
meaning of “better" corresponds to the manner in which we
choose to rank the values for each dimension, being smaller or
larger, although the ranking should be consistent amongst all
dimensions. For this work, we regard smaller values as better,
therefore the mathematical definition of dominance becomes:

Dominance: Given p,q ∈ D, p dominates q, written as
p≺ q if and only if ∀i∈ [0,d−1] p[i]≤ q[i] and ∃ j ∈ [0,d−1]
such that p[j]< q[j].

Any point that is not dominated from any other in the
dataset, will be part of the skyline set (Fig. 3) and can be
identified through a simple comparison called Dominance Test
(DT).

Skyline: The skyline S of set D is the collection of points
S = {∀p ∈ D|@q ∈ s.t q≺ p}.

Clearly S ⊆ D. The definition of dominance acts as the
basic building block for designing skyline algorithms. The
BNL algorithm relies naïvely on brute force to compute the
skyline set. This method is quite inefficient, resulting in O(n2)
DTs and a proportional number of memory fetches. To avoid
unnecessary DTs, previous solutions used in-order processing
based on a user defined monotone function. It considers all
query attributes, reducing the point to a single value that can
be used for sorting. Such a function is formally defined as:

Monotone Function: A monotone scoring function F with
respect to Rd takes as input a given point p ∈ D and maps
it to R using k monotone increasing functions (f1, f2, ... fk).
Therefore, for p ∈ D, F(p) = ∑

k
i=1 fi(p[i]).

The ordering guarantees that points which are already deter-
mined to be part of the skyline, will not be dominated by any

3

7

6

2

5

011

111

110

010

101

0 1

2 3

0 1

2 5

111

110

101

0 1

1 2

0 1

1 3

111

110

0 1

1 1

0 1

1 2

𝟏𝒔𝒕 𝒅𝒊𝒈𝒊𝒕
𝑘 = 4, 𝑣𝑘 = 𝑋𝑋𝑋 𝑘 = 2, 𝑣𝑘 = 1𝑋𝑋 𝑘 = 0, 𝑣𝑘 = 1𝑋𝑋

𝟐𝒏𝒅 𝒅𝒊𝒈𝒊𝒕 𝟑𝒓𝒅 𝒅𝒊𝒈𝒊𝒕

𝐶𝑜𝑢𝑛𝑡

𝑃𝑟𝑒𝑓𝑖𝑥 𝑆𝑢𝑚 𝑃𝑟𝑒𝑓𝑖𝑥 𝑆𝑢𝑚

𝐶𝑜𝑢𝑛𝑡

𝑃𝑟𝑒𝑓𝑖𝑥 𝑆𝑢𝑚

𝐶𝑜𝑢𝑛𝑡

Figure 4: Radix-select example using radix-1.

other which are yet to be processed. This effectively reduces
the number of DTs by half.

Another important optimization aimed at reducing the total
number of DTs uses a so-called stopping point [5] to determine
when it is apparent that no other point is going to be added in
the skyline. Thus a number of DTs are avoided by stopping
early. Each time a new point is added to the skyline, it is
checked to see if it can be used as a stopping point. Regardless
of the chosen monotone function, we can optimally select that
point using the following update MiniMax [5] equation:

ps = argmin
pi∈S

{
max

j∈[0,d−1]
{pi[j]}

}
(1)

5. DSky Algorithm Overview
We present a high level overview of our novel algorithm which
we call DPU Skyline (DSky), followed by a detailed complex-
ity analysis. The algorithm operates in two stages, the prepro-
cessing stage where points are grouped into blocks/partitions
and assigned to different DPUs, and a main processing stage
spanning across multiple iterations within which individual
blocks are compared in parallel against other previously pro-
cessed blocks.

5.1. Parallel Radix-Select & Block Creation
Maintaining the efficiency of sequential skyline algorithms,
requires processing points in-order based on a user-defined
monotone function. Due to architectural constraints, sorting
the input to establish that order, contributes to a significant
increase in the communication cost between host and DPUs.
Our algorithm relies on parallel radix-select [3] to find a set of
pivots which can be used to split the dataset into a collection
of blocks/partitions. Radix-select operates on the ranks/scores
that are generated for each point from a user defined mono-
tone function. In our implementation, we assume the use of
L1 norm. Computing the rank of each point is relatively inex-
pensive, highly parallel and can be achieved by splitting the
data points evenly across all available DPUs.

Radix-select closely resembles radix-sort, in that it requires
grouping keys by their individual digits which share the same
significant position and value. However, it differs as its ulti-
mate goal is to discover the k-th largest element and not sort
the data. This can be accomplished by building a histogram
of the digit occurrences, for each significant position across
multiple iterations, and iteratively construct the digits for the
k-th largest element. An example for k = 4 is shown in Fig. 4.
The digits are examined in groups of 1 (i.e. radix-1) starting

4

from the most significant digit (MSD). At the first iteration,
there are 2 and 3 occurrences of 0 and 1, respectively. The
prefix sum of these values indicates that the 4-th element starts
with 1. We update k by subtracting the number of elements at
the lower bins. This process repeats at the next iteration for
elements that match to 1XX . After 3 iterations the k-th largest
value will be vk = 110.

The pseudocode for the DPU kernel corresponding to radix-
select is shown in Algorithm 1. In our implementation, we
use radix-4 (i.e. examine 4 digits at a time) which requires
16 bins per thread. For 32-bit2 values, we require 8 iterations
that consist of two phases. First, each DPU thread counts the
digit occurrences for a given portion of the data. At a given
synchronization point the threads cooperate to accumulate par-
tial results into a single data instance. In the second phase,
the host will gather all intermediate results and calculate the
corresponding digit of the k-th value while also updating k.
The new information is then made available to all DPUs at
the next iteration. This whole process is memory bound, al-
though highly parallel and with a low communication cost (i.e.
only few KB need to be exchanged), fitting nicely to the PIM
paradigm. Therefore, it is suitable for discovering the splitting
points between partitions.

Algorithm 1 Radix-select Kernel
R = Precomputed Rank vector.
K = Splitting Position.
Vk = Digits of Current Pivot.

1: for digit ∈ [7,0] do
2: Set Bt = {0} . Set thread bins to zero.
3: for all r ∈ R in parallel do
4: if pre f ix(r,Vk) then . Match prefix.
5: Bt [digit]++
6: end if
7: end for
8: B = sum(Bt) . Aggregate Partial Counts.
9: (Vk,K) = search(B,K) . Update P & K.

10: end for

Assuming a partition size, denoted with Psize, and N number
of points, we require Pvt =P−1= N

Psize
−1 pivots to create par-

titions {C0,C1,C2...CP−2,CP−1}. In Algorithm 2, we present
the pseudocode for assigning points to their corresponding par-
titions. As indicated in Line 3, we concentrate on the rank of a
given point to identify the range of pivots that contain it, after
which we assign it to the partition with the corresponding in-
dex. The presented partitioning method guarantees that no two
points p, q exist, such that p ∈Ci and q ∈C j, where i < j and
F(p) > F(q). Points within a partition do not have to be or-
dered with respect to their rank, given a small partition which
allows for parallel brute force point-to-point comparison.

Blocked processing has been used before for CPU based
skyline computation [11] to improve cache locality. Our solu-
tion differs, since it supports blocking while avoiding the high

2Floating-point types can be processed through a simple transformation to
their IEEE-754 format.

𝐷𝑃𝑈0

Horizontal Assignment

𝐷𝑃𝑈1

𝐶0

𝐶1

𝐶2

𝐶3

𝐶4

𝐶5

𝐶6

𝐶7

𝐷𝑃𝑈0

Spiral Assignment

𝐷𝑃𝑈1

𝐶0

𝐶3

𝐶4

𝐶7

𝐶1

𝐶2

𝐶5

𝐶6

Figure 5: Assignment strategies of 8 partitions on 2 DPUs.

cost of completely sorting the input data. Furthermore, we
utilize blocking to introduce a nontrivial work assignment strat-
egy which enables us to design a highly parallel and through-
put optimized skyline algorithm for PIM architectures. This
strategy aims at maximizing parallel work through maintaining
good load balance across all participating DPUs, as compared
to the optimal case.

Algorithm 2 Radix-select Partitioning
D = Input dataset
Rp = Pivots vector

1: Rp = radix_select(D) . Calculate pivots.
2: for all p ∈ D do
3: if Rp[j]< F(p)≤ Rp[j+1] then
4: C j =C j ∪{p} . Assign p to C j .
5: end if
6: end for

5.2. Horizontal Partition Assignment
In this section, we concentrate on introducing a simple horizon-
tal assignment strategy, the performance of which motivates
our efforts to suggest a better solution. Our goal is to establish
the lower bound associated with the parallel work for com-
puting the skyline, measured in partition-to-partition (p2p)
comparisons, and suggest a strategy along with the algorithm
that is able to attain it.

We start by introducing some definitions. Given a partition
C j, we define its pruned equivalent partition, the set of all
points that appear in C j which will be eventually identified
as being part of the final skyline set. We denote this pruned
partition as C̃ j ⊆C j. Assuming a collection of P partitions,
which can be ordered using radix-select partitioning, such that
for i, j ∈ [0,P− 1] and i < j, then Ci ≺ C j (i.e. Ci precedes
C j), it is possible to compute P pruned partitions iteratively:

a. C̃0 = p2p(C0,C0)

b. C̃1 = p2p(C̃0, p2p(C1,C1))

c. C̃2 = p2p(C̃0, p2p(C̃1, p2p(C2,C2)))

The p2p function denotes a single partition-to-partition com-
parison operation, checking if any points exist in Ci that domi-
nate those in C j. More details related to the implementation
of p2p, are presented in Section 5.4.1. We observe that using
the pruned partition definition, we can calculate the skyline
set using the following formula:

S = ∪
i∈[0,P−1]

(
C̃i

)
(2)

Eq. 2, indicates that it is possible to compute the skyline us-

5

ing the union of all pruned partitions. Therefore, it is possible
to maintain and share information about the skyline without
using a centralized data structure. Additionally, once C̃ j is
generated, all remaining partitions with index larger than j
may use it to prune points from their own collection. In fact,
performing this work is “embarrassingly" parallel and depend-
ing on the partition size and the input dataset size, it can be
scaled to utilize thousands of processing cores. However, we
observe that assigning work to DPUs naïvely could potentially
hurt performance, due to the apparent dependencies between
partitions and the fact that latter partitions require more p2p
comparisons to be pruned.

Assuming all partitions are processed in sequence, we can
calculate the number of total p2p comparisons by examin-
ing each partition separately. For example, C0 will need 1
self-comparison (i.e. p2p(C0,C0)), C1 will need 2 p2p com-
parisons, C2 3 and so on. In fact, the total number of p2p
comparisons, assuming P partitions is given by the following
equation:

Mseq =
P ·(P+1)

2
(3)

Ideally, with Dp DPUs at our disposal, we would like to
evenly distribute the workload among them, maintaining a p2p
comparison count which is roughly equal to Mseq

Dp
. A fairly

common and easily implementable strategy, is to divide the
partitions (PD = P

Dp
per DPU) horizontally across DPUs as

indicated in Figure 5. However, if we attempt to follow this
strategy, the DPU responsible for the last collection of parti-
tions will have to perform at least (P−PD) ·PD + PD ·(PD+1)

2
p2p comparisons a number P ·PD times higher than the DPU
responsible for the first collection of partitions. Obviously,
this assignment mechanism suffers from several issues, the
most important of which is poor load balancing. In fact during
processing, the majority of the participating DPUs will be idle
waiting for pruned partitions to be calculated and transmitted.
Additionally, the limited memory space available to each DPU,
makes it hard to amortize the cost of communication, since
processing needs to complete before exchanging any data. To
overcome the problems set forth by horizontal partitioning, we
introduce the concept of spiral partition assignment.

5.3. Spiral Partition Assignment
Commonly, data intensive algorithms rely on Bulk Syn-
chronous Processing (BSP) to iteratively apply transforma-
tions on a given input across many iterations, between which a
large portion of the execution time is dedicated to processing
rather than communication. This process aims to maintain
good load balance and reducing communication to effectively
minimize each processor’s idle time. In this section, we in-
troduce a nontrivial assignment strategy which allows for the
design of an iterative algorithm that follows the aforemen-
tioned properties.

Our assignment strategy relies on the observation that for
a collection of 2 ·Dp ordered partitions with respect to a user-

provided monotone function, we can always group them to-
gether creating non-overlapping pairs, all of which when pro-
cessed individually, require the same p2p comparison count.
The pairing process considers partitions in opposite locations
with respect to the monotone function ordering, resulting in
the creation of Dp pairs in total. For example, assuming the
existence of partitions

{
C0,C1...,C2·Dp−1

}
, we will end up

with the following pairs:{〈
C0,C2·Dp−1

〉
,
〈
C1,C2·Dp−2

〉
...,
〈
CDp−1,CDp

〉}
(4)

In Figure 5, we showcase our novel assignment strategy,
which we call spiral partitioning, next to the naïve horizontal
partitioning scheme. In contrast to the horizontal partitioning
mechanism which requires 4 ·4+ 4·5

2 = 26 p2p comparisons
from a single DPU, our spiral partitioning scheme requires
only 18 (i.e., (1+4+5+8) =DPU0, (2+3+6+7) =DPU1)
most of which can be performed in parallel. This number is
equivalent to Mseq

Dp
= 36

2 , indicating that our spiral partition-
ing strategy splits evenly the expected workload across all
participating DPUs.

In our analysis, we assumed the number of partitions P to
be equal to 2 ·Dp. In the general case, we can choose P and
Dp, in order for P to be expressed as multiple of 2 ·Dp such
that K = P

2·Dp
. For each one of the K collections, we can

individually apply the spiral partitioning algorithm and assign
one pair from each collection to a distinct DPU. Following
this assignment process, we calculate the total p2p comparison
count per DPU based on the following formula:

Mopt = (1+2 ·Dp)+(1+6 ·Dp)+

(1+10 ·Dp)+ ...= Dp ·(2+6+10+14...)+

PD

2
= Dp ·

(4+4 ·(PD
2 −1))

2
· PD

2
+

PD

2
=

PD

2
·
[

2 · PD

2
·Dp +1

]
=

P
2 ·Dp

[P+1]⇒

Mopt =
P ·(P+1)

2 ·Dp

(5)

The aforementioned formula is based on the observation
that for each collection, the number of p2p comparisons per
DPU is equal to the p2p comparisons required for the first
and last partition of that collection. Therefore, for the first
collection we need 1+2 ·Dp p2p comparisons, for the second
2 ·Dp +1+4 ·Dp, for the third 4 ·Dp +1+6 ·Dp and so on.

In theory, it is possible to utilize at most P
2 DPUs for pro-

cessing when using spiral partitioning. However, in practice,
it might not be beneficial to reach this limit, since at that point
the work performed within each DPU will not be enough to
amortize the cost of communication or minimize the idle time.
Additionally, due to the existing dependencies between parti-
tions, increasing the number of DPUs will result in less work
being performed in parallel. In the next section, we present
more details regarding these issues and present the intrinsic
characteristics of our main algorithm.

6

Partitions/Iteration 𝑖 = 0 𝑖 = 1 𝑖 = 2 𝑖 = 3 𝑖 = 4 𝑖 = 5 𝑖 = 6

{𝐶0, 𝐶3, 𝐶4, 𝐶7} ሚ𝐶0: (𝐶3, 𝐶4, 𝐶7) ሚ𝐶1: (𝐶3, 𝐶4, 𝐶7) ሚ𝐶2: (𝐶3, 𝐶4, 𝐶7) ሚ𝐶3: (𝐶4, 𝐶7) ሚ𝐶4: (𝐶7) ሚ𝐶5: (𝐶7) ሚ𝐶6: (𝐶7)

{𝐶1, 𝐶2, 𝐶5, 𝐶6} ሚ𝐶0: (𝐶1, 𝐶2, 𝐶5, 𝐶6) ሚ𝐶1: (𝐶2, 𝐶5, 𝐶6) ሚ𝐶2: (𝐶5, 𝐶6) ሚ𝐶3: (𝐶5, 𝐶6) ሚ𝐶4: (𝐶5, 𝐶6) ሚ𝐶5: (𝐶6) −

Partitions/Iteration 𝑖 = 0 𝑖 = 1 𝑖 = 2

{𝐶0, 𝐶3} ሚ𝐶0: (𝐶3) ሚ𝐶1: (𝐶3) ሚ𝐶2: (𝐶3)

{𝐶1, 𝐶2} ሚ𝐶0: (𝐶1, 𝐶2) ሚ𝐶1: (𝐶2) −

(A)

(B)

Figure 6: Number of comparisons across iterations when assigning (A) 2 partitions per DPU vs (B) 4 partitions per DPU

5.4. DSky Main Processing Stage
Leveraging on spiral partitioning, we introduce a new algo-
rithm for computing the skyline set on PIM architectures.
Once each partition has been assigned to their corresponding
DPU, we can start calculating each pruned partition within
two distinct phases as indicated in Algorithm 3. In the first
phase, each DPU performs a “self-comparison" for all par-
titions assigned to it. This step is “embarrassingly" parallel
and does not require any data to be exchanged. The second
phase consists of multiple iterations across which the pruned
partitions are computed. At iteration i, the pruned partition
C̃i has already been computed and is ready to be transmitted
across all DPUs. Once the broadcast is complete, all DPUs
have access to C̃i which they use as a window to partially
prune any of their own C j partitions in parallel, where j > i is
based on the established ordering of partitions.

Our implementation uses a collection of flags, denoted with
Fi for partition C̃i, to mark which points have been dominated
during processing. We indicate with 0 those points that have
been pruned away and with 1 those that are still tentatively
skyline candidates. The whole process is orchestrated by the
host (CPU), who keeps track of which partition needs to be
transmitted at the end of each iteration. It is important to note
that broadcasting individual partitions can be expensive. For
this reason, we need to carefully choose the partition size in
order to overlap data exchange with actual processing. Addi-
tionally, we propose to further reduce this cost by preemptively
broadcasting m partitions at each iteration before they are actu-
ally needed, thus increasing the computation-communication
overlap window. Nevertheless, we still need to wait for the Fi
bit-vector to become available before starting the next iteration.
However, once the corresponding Fi bit-vector is calculated we
can inexpensively transmit it to all DPUs, since it is inversely
proportional to the point dimensions and partition size.

Assuming an optimal p2p kernel, we measure the complex-
ity of DSky in terms of p2p comparisons per DPU. For the
first phase, each DPU is responsible for self-comparing their
assigned partitions, requiring PD comparisons to complete.
The second stage is slightly more complex. Within iteration
i, the corresponding partition C̃i will be compared against all
C j partitions having a higher index. Starting from C̃0 and for
the next Dp−1 iterations, each DPU will perform PD compar-
isons. Once C̃Dp is computed, only partitions with index larger
than Dp will need to be considered, resulting in at most PD−1
comparisons for iterations Dp to 2 ·Dp− 1. This process is

repeated multiple times until all partitions within each DPU
have been checked. Adding the complexity of each phase
together, we end up with the following formula:

Mpar = [(Dp−1) ·PD +Dp ·(PD−1)+
Dp ·(PD−2) ... +Dp ·1]+PD⇒

Mpar = Dp · [
PD ·(PD +1)

2
]

(6)

Algorithm 3 DSky Algorithm
B j = Region bit vectors for C j.
Fj = Flags indicating active skyline points for C j.

1: for all DPUs in parallel do
2: for all C j ∈ DPUi do
3: P2P(C j,B j,C j,B j) . Self compare partitions.
4: end for
5: end for
6: for all i ∈ [0,P−1] do
7: copy(C̃i, B̃i,Fi) . Broadcast pruned partition info.
8: for all DPUs in parallel do
9: for all j > i do

10: P2P(C̃i, B̃i,C j,B j) . Prune C j using C̃i
11: end for
12: end for
13: end for

From Eq. 6 and Eq. 5, if we replace PD = P
Dp

, we get the
following ratio:

Mpar

Mopt
=

1+ Dp
P

1+ 1
P

(7)

From Eq. 7, we can observe how different values for P and
Dp affect the complexity of DSky with respect to the optimal
case. When P→ ∞, then Mpar

Mopt
→ 1. Intuitively, when the

number of partitions assigned per DPU is significantly larger
than its collective number, the observed idle time constitutes a
smaller portion of the actual processing time. In Figure 6 using
two DPUs, we present an example where 2 or 4 partitions
are assigned per DPU. In the first case, we require 3 p2p
comparisons and within iterations i= 0,2, DPU0 or DPU1 will
do 1 less comparison than the other, respectively. Therefore, 1

4
of the time each DPU will be idle. In the second case, the total
comparisons across iterations will be 14 and the corresponding
idle time within iterations i = 0,2,4,6 is 2. Hence, the idle
time per DPU will be 2

16 , half of what was observed for the
previous example. At this point, it is important to note that
creating more partitions does not depend on the input size,

7

𝑝3

𝑝6

𝑝7

𝑝2

𝑝1
𝑝5

𝑝4
𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7

10 01 10 01 10 11 01

00 01 11 00 10 01 11𝐿𝑒𝑣𝑒𝑙2

𝐿𝑒𝑣𝑒𝑙1

Figure 7: Median pivot multi-level partitioning example.

but instead on the number of pivots calculated during radix-
select partitioning. Although, this may seem like having a
partition size equal to 1 is the best case, in practice there are
several trade-offs to consider, such as the preprocessing time
required to calculate each partition and the communication
overhead when small data are transmitted frequently and not
in bulk. Through experimentation, we are able to identify the
specific parameters contributing to these trade-offs, allowing
us to successfully fine tune the partition size.
5.4.1. P2P Kernel In this section, we discuss three specific
optimizations that can be integrated into our p2p kernel to
ensure algorithmic efficiency. Although, their application on
PIM systems created unprecedented challenges, our novel
assignment strategy made possible to overcome them.

Optimization I: The points within each partition are sorted
based on their rank. This optimization can be embarrassingly
parallel and less expensive than globally sorting all the points.
It aims at reducing the expected number of DTs for each DPU
by half [11].

Algorithm 4 P2P Function Kernel
R j = Rank vector for C j.
B j = Region bit vectors for C j.
Fj = Flags indicating active skyline points for C j.
(gs, ps) = Global stop level and point.

1: if stop(gs,ps,R j[0],C j[0]) then
2: return Fj← 0 . Prune partition.
3: end if
4: for all q ∈C jin parallel do
5: if Fj[q] 6= 0 then . q is alive.
6: for all p ∈Ci do
7: if Fi[p] 6= 0 then . p is alive.
8: if Bi[p]⊀ B j[q] then . Incomparable.
9: continue

10: end if
11: if p≺ q then
12: Fj[q]← 0 . Set flag for q to zero.
13: break
14: end if
15: end if
16: end for
17: end if
18: if Fj[q] = 1 then . Point is not dominated.
19: ls[id] = MiniMax(q,ls[id]) . Thread stop level.
20: ps[id] = q . Thread stop point.
21: end if
22: end for
23: (gs, ps) =update_ps(ls[id] , ps[id]) . DPU stop info.
24: merge Fj

Optimization II: For more challenging distributions (i.e.
anti-correlated), space partitioning is preferable since it can
help with identifying incomparable point through cheap fil-
ter tests [11]. Similarly to previous work [7], we exploit a
recursive space partitioning scheme to detect incomparability.
This technique requires calculating bit-vectors for each point,
indicating the region of space it resides. They are determined
through a virtual pivot, constructed from the median value of
its subspace.

An example of this is shown in Figure 7. There, we deter-
mine the values for the median level virtual pivot by taking
the projection of p1 in the x-axis and p4 in the y-axis. Each
point is assigned a bit vector based on its relative position to
the virtual point. For example, p1 is assigned 10 because it
is ≥ and < in the x and y-axis, respectively, compared to the
pivot. For each quartile, we can repeat this process multiple
times. However, it has been shown empirically [7] that doing it
twice is sufficient to gain good algorithmic efficiency. We use
radix-select to calculate the median value for each subspace
and construct the corresponding pivots.

In related work [7], a centralized data structure is used to
manage the bit vectors and establish a good order of process-
ing. Due to architectural limitations (i.e. expensive global
access), our implementation uses a flat array to pack both
bit vectors in a single 32-bit value for each point. Our spiral
partitioning scheme is responsible for maintaining the good
order of processing. Additionally, it is designed around op-
timizing local access and minimizing communication while,
also, promoting the seamless incorporation of the bit vector
information within a partition.

Optimization III: Based on the work in [5], we use Eq. 1
to update the stopping level and point, and then compare this
information with the point of the smallest rank within each
partition to determine if it is dominated. Due to lack of space,
we omit details on why this optimization works, although we
discuss how it can be applied in our paradigm. The stopping
information is updated locally within each DPU. The host is
responsible for merging the local results at each step of DSky’s
second stage (Algorithm 3). This process requires only a few
KBs to be exchanged, thus its communication overhead is low.

Algorithm 4 presents the implementation of our p2p ker-
nel. Each DPU allocates memory for PD partitions, plus two
remote partitions to support double buffering. In Line 1, we
compare the smallest rank within the given partition to the
global stopping value to determine if the whole partition is
dominated. When this test fails, we need to check all the points
within the partition. For each point in the local partition, we
only examine the points that are still skyline candidates (Line
5) against those of the remote partition that satisfy the same
property (Line 7). Using the corresponding bit vectors, if the
two points are incomparable (Line 8) we skip to the next point
in the remote partition, otherwise we need to perform a full
DT (Line 11). For all points in the local partition that are not
dominated (Line 18), we update the local stop point informa-
tion. At the end of the for-loop (Lines 23−24), we merge the

8

local stop point information and update the local partition’s
flags to indicate which points have been dominated.
Framework generality: Note that the intrinsic characteris-
tics of PIM architectures imply the need to define three main
stages in order to develop an efficient PIM algorithm: (i) data
partitioning, (ii) local batch processing, and (iii) intermediate
result merging. These stages are pivotal for overcoming the
physical or logical isolation of the embedded processors, inher-
ent to most prominent PIM systems [14]. In fact, these stages
are interchangeable with only minor variations when it comes
to developing algorithms for other data intensive applications
(i.e. Top-K, Group-by aggregation, Joins etc.). An important
difference between such applications and the skyline problem,
is that some of the former might not produce large intermedi-
ate results, which require careful design of the third stage in
order to deal with the excessive communication cost. How-
ever, the first two stages are universally applicable to various
data intensive applications, that seek to achieve effective load
balancing and massive parallelism on PIM. Hence our anal-
ysis can serve as a general parallel framework upon which
solutions for related analytical workloads can be proposed.

6. Experimental Evaluation
In this section, we present an in-depth analysis of DSky,
comparing against the state-of-the-art sequential [21], multi-
core [11] and many-core [7] algorithms.

6.1. Setup Configuration
CPU Configuration: For the CPU algorithms, we conducted
experiments on an Intel Xeon E5-2650 2.3 GHz CPU with 64
GB memory. We used readily available C++ implementations
of BSkyTree [21] and Hybrid [8].

GPU Configuration: For the GPU, we used the latest
NVIDIA Titan X (Pascal) 1.53 GHz 12 GB main memory
GPU with CUDA 8.0. We conducted experiments using the
readily available C++ implementation of SkyAlign [8] which
is the current state-of-the-art algorithm for GPUs. For a fair
comparison, we present measurements using clock frequencies
0.75 and 1.53 GHz.

DPU Configuration: We implemented both phases of
DSky, including the preprocessing steps, using UPMEM’s
C-based development framework [1] and dedicated compiler.
Our experiments were performed on UPMEM’s Cycle Accu-
rate Simulator (CAS) using the binary files of the correspond-
ing implementation. The simulation results were validated us-
ing an FPGA implementation [1] of the DPU pipeline. Based
on the reported clock cycle count that includes pipeline stalls
associated with the corresponding data accesses, and a base
clock of 0.75 GHz for each DPU, we calculated the exact
execution time for a single node system using 8 to 4096 DPUs.
For a fair comparison against the GPU, we limit the number
of DPUs in accordance to the available cuda cores (i.e. 3584).

6.2. Dataset
Similarly to previous work [7], we rely on the standard sky-
line dataset generator [9] to create common data distributions

(i.e., correlated, independent, anticorrelated). We compare
against the CPU and GPU implementations using queries with
dimensionality d ∈ {4,8,16} and for dataset of cardinality
n ∈
[
220,226

]
3. Additional experiments are presented on PIM

only for cardinality n ∈
[
220,229

]
.

6.3. Experiments & Metrics
For all implementations, our measurements include the cost
of preprocessing and data transfer (where it is applicable)
across PCIE 3.0 (i.e. GPU) or broadcast between DPUs. We
benchmarked the aforementioned algorithms with all of their
optimizations enabled. For the performance evaluation, we
concentrate on the following metrics:

Runtime Performance: This metric is used to evaluate at a
high level the performance of DSky against previous solutions.
It showcases the overall capabilities of the given architecture
coupled with the chosen algorithm.

Algorithmic Efficiency & Throughput: Due to several
hidden details within the runtime performance, we focus on
the algorithmic efficiency by studying the number of full DTs
conducted by each algorithm. Our ultimate goal is to show-
case the ability of DSky to successfully incorporate known
skyline optimizations and indicate their contribution towards
achieving high throughput on the UPMEM-PIM architecture.

Scaling: An important property of the UPMEM-PIM ar-
chitecture is the ability to easily increase resources when the
input grows beyond capacity. However, doing so requires a
well designed parallel algorithm that avoids any unnecessary
overheads caused by excessive communication or load imbal-
ance. With this metric, we indicate DSky’s ability to scale
when resources increase proportionally to the input size.

In addition, our experiments on comparing the system uti-
lization between GPU and PIM architectures, indicated an
upward trend of 75% for PIM against 40% for GPUs (figures
omitted due to lack of space). Moreover, we provide measure-
ments indicating superior energy efficiency when comparing
our solution to state-of-the-art algorithms on CPUs and GPUs
(Section 6.7).

6.4. Run-Time Performance
Correlated data contribute to a smaller skyline set which con-
tains only a few dominator points. Therefore, during process-
ing the main performance bottleneck is the memory bandwidth.
Figure 8 illustrates the runtime performance for all algorithms
on correlated data. DSky outperforms previous state-of-the-art
algorithms for all tested query dimensions. This happens be-
cause it relies on radix-select, an inherently memory bound
operation, to lower the preprocessing cost. Moreover, the main
processing stage terminates early due to the discovery of a
suitable stopping point. BSkyTree and Hybrid under-utilize
the available bandwidth, since a single point requires only few
comparisons to be pruned away. Therefore, prefetching data
into cache will result in lower computation to communica-

3Due to restrictions in GPU memory, the maximum dataset for comparison
purposes was set to 226.

9

104

103

102

101

1 16 32 48 64

104

103

102

101

1 16 32 48 64

105

104

103

102

101
1 16 32 48 64

Ti
m

e(
m

s)

D=16D=8D=4

Cardinality (Millions)

BSkyTree Hybrid SkyAlign (1.5 GHz) SkyAlign (0.75GHz) DSky

Figure 8: Execution time (log(t)) using correlated data.
tion ratio and higher execution time. SkyAlign is limited by
the overhead associated with launching kernels on the GPU,
which in this case is high relative to the cost of the processing
and preprocessing stages.

Figure 9 presents the runtime performance for all meth-
ods using independent data. We observe that DSky outper-
forms previous implementations for query dimensions (i.e.
d ={4,8}) that reflect the needs of real-world applications.
Hybrid and BSkyTree are restricted by the cache size, since
increasing dimensionality contributes to a larger skyline. This
results in a higher number of direct memory accesses lead-
ing to higher runtime. Compared to DSky, SkyAlign exhibits
higher runtime on 4 and 8 dimension queries, due to achieving
lower throughput as a result of irregular memory accesses and
thread divergence. On 16 dimensions, these limitations have a
lesser effect on runtime, due to the increased workload which
contributes towards masking memory access latency when
more threads execute in parallel. However, concentrating on
measurements using 0.75 GHz clock frequency, we observe
that DSky outperforms SkyAlign approximately by a factor of 2.
Intuitively, this indicates that DSky is throughput efficient com-
pared to SkyAlign, as the latter fails to sustain same runtime for
equal specification. In fact, experiments with higher frequency
indicate a trend that predicts better performance for DSky on
sufficiently large input (beyond 16 million points SkyAlign
would crash, probably due to implementation restrictions and
limited global memory).

Finally, Figure 10 illustrates the measured runtime for anti-
correlated distributions. As before, DSky outperforms CPU-

107

106

105

104

103

102

1 16 32 48 64

BSkyTree Hybrid SkyAlign (1.5 GHz) SkyAlign (0.75GHz) DSky

105

104

103

102

1 16 32 48 64

106

105

104

103

102

1 16 32 48 64

Ti
m

e(
m

s)

D=4 D=8 D=16

Cardinality (Millions)

Figure 9: Execution time (log(t)) using independent data.

BSkyTree Hybrid SkyAlign (1.5 GHz) SkyAlign (0.75GHz) DSky

106

105

104

103

102

1 16 32 48 64

107

106

105

104

103

102

1 16 32 48 64

108

107

106

105

104

103

1 16 32 48 64

D=16D=8D=4

Cardinality (Millions)

Ti
m

e
(m

s)

Figure 10: Execution time (log(t)) using anticorrelated data.

based methods which are restricted by the cache size. The only
noticeable difference relates to the runtime of SkyAlign which
is closer to that of DSky on 8 and 16 dimensions for higher
clock frequency. The increased workload associated with anti-
correlated distributions makes optimizing for work-efficiency
a good strategy but only for a relatively small number of points.

6.5. Algorithmic Efficiency & Throughput
Figure 11 illustrates the number of full DTs performed by all
algorithms. We concentrate on independent and anticorrelated
distributions and omit DTs performed on correlated data as
their limited number has a lesser impact on throughput. Our
experiments indicate that DSky exhibits remarkable efficiency
for queries on 8 dimensions, outperforming the state-of-the-
art parallel algorithms. In fact, its performance is closer to
BSkyTree in terms of total DT count, indicating its ability
to achieve balance between efficient pruning and detecting
incomparability. This results from the optimizations related
to in-order processing, early stopping and cheap filter tests
using space partitioning. On 16 dimensions, DSky remains as
efficient or slightly better than the CPU-based methods. In
contrast to SkyAlign, DSky requires more DTs to compute the
skyline, since the former relies on a centralized data structure
to decide the ordering in which points are processed. Avoiding
such a data structure comes at a trade-off, which offers oppor-
tunities for high parallelism and subsequently high throughput
at the expense of doing more work.

In order to support our claims, we present in Figure 12

D=16

D=8

D=16

D
T

C
o

u
n

t
D

T
C

o
u

n
t

CardinalityCardinality

D=8

Independent Anticorrelated

BSkyTree Hybrid SkyAlign Dsky

1010

109

108

107

220 221 222 223 224 225 226

1010

109

108

107

220 221 222 223 224 225 226

220 221 222 223 224 225 226

1010

109

108

107

1010

109

108

107

220 221 222 223 224 225 226

Figure 11: Number of executed DTs per algorithm.

10

0

300

600

900

1200

220 221 222 223 224 225 226

0

300

600

900

1200

220 221 222 223 224 225 226

BSkyTree Hybrid SkyAlign Dsky

Independent

M
D
Ts
/s
ec

Anticorrelated

M
D
Ts
/s
ec

Cardinality

Figure 12: MDTs/sec for each algorithm on 16 dimensions.
D=8

Cardinality

Ti
m

e
(m

s)

106

104

102

100

220 221 222 223 224 225 226 227 228 229

106

104

102

100
220 221 222 223 224 225 226 227 228 229

D=16

Ti
m

e
(m

s)

Correlated Independent Anticorrelated

Figure 13: Execution time scaling with additional DPUs.
the throughput measured in million DTs per second for all
implementations. We focus on the higher workload 16 dimen-
sion queries that allow for accurate throughput measurements.
In our experiments, we observe that DSky is able to consis-
tently maintain a higher throughput than previous state-of-the-
art algorithms. Despite requiring a higher number of DTs,
DSky maintains a higher processing rate relative to SkyAlign
when using the same clock frequency. Intuitively, this can be
attributed to a less rigid parallel execution model which al-
lows for irregular processing, and higher bandwidth achieved
through processing-in-memory. DSky leverages on these two
properties towards being throughput efficient.

6.6. Scaling
We evaluate scalability by measuring the execution time, while
the number of available DPUs increases proportionally (i.e. 8
to 4096) to the input size. Figure 13 contains the results of
our experiments for all distributions. We focus on 8 and 16
dimension queries, which are the most compute and communi-
cation intensive case studies. Experiments with correlated data
demonstrate a constant increase in execution time regardless
of the query dimensions. We attribute this behavior to the

higher cost of communication relative to processing. In prac-
tice, doubling the number of DPUs will improve performance
only when the computation cost is sufficiently large. Low pro-
cessing time offers minimal improvements over the increase in
communication which dominates the overall execution time.

Independent and anticorrelated distributions require more
time for processing than transmitting data, thus adding re-
sources contributes to a higher reduction of the total execution
time. In fact, as we increase the number of DPUs propor-
tionally to the number of points, the execution time remains
fairly constant regardless of the distribution or query dimen-
sion. This showcases the ability of DSky to scale comfortably
with respect to growing input. It is also noteworthy to mention
that selecting a suitable partition size, contributes to achieving
good scalability. This offers more opportunities for paral-
lelism, while minimizing the work overhead associated with
dependencies which arise from in-order processing.

6.7. Energy Consumption
As seen from our experimental evaluation, in most cases DSky
achieves same or better execution time than state of the art solu-
tions while being more throughput efficient and easily scalable.
Moreover, DSky runs on an architecture that uses around 25%
of the energy requirements (Table 1). Overall, this translates
to more than an order of magnitude better energy consumption
per unit of work in comparison to the corresponding CPU and
GPU solutions, as seen in Table 2.

CPU GPU PIM
Independent 0.715 1.124 0.140
Anticorrelated 1.562 2.177 0.153

Table 2: Energy per unit of work (µJ/DT).

7. Conclusion
In this work, we presented a massively parallel skyline al-
gorithm for PIM architectures, called DSky. Leveraging on
our novel work assignment strategy, we showcased DSky’s
ability to achieve good load balance across all participating
DPUs. We proved that by following this methodology, the
total amount of parallel work is asymptotically equal to the
optimal case. Furthermore, combining spiral partitioning with
blocking enabled us to seamlessly incorporate optimizations
that contribute towards respectable algorithmic efficiency. Our
claims have been validated by an extensive set of experiments
that showcased DSky’s ability to outperform the state-of-the-
art implementations for both CPUs and GPUs. Moreover,
DSky maintains higher processing throughput and better re-
source utilization. In addition, we showcased that DSky scales
well with added resources, a feature that fits closely the capa-
bilities of PIM architectures. Finally, our solution improves
by more than an order of magnitude the energy consumption
per unit of work, as compared to CPUs and GPUs.
Acknowledgement: We would like to thank UPMEM for
providing the SDK and related simulation tools to evaluate our
algorithms.

11

References
[1] UPMEM SDK, 2015. http://www.upmem.com/wp-content/

uploads/2017/02/20170210_SDK_One-Pager.pdf.
[2] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi. A scalable processing-

in-memory accelerator for parallel graph processing. In Proc. ISCA,
pages 105–117. IEEE, 2015.

[3] T. Alabi, J. D. Blanchard, B. Gordon, and R. Steinbach. Fast k-selection
algorithms for graphics processing units. Journal of Experimental
Algorithmics (JEA), 17:4–2, 2012.

[4] W.-T. Balke and U. Güntzer. Multi-objective query processing for
database systems. In Proc. VLDB, pages 936–947, 2004.

[5] I. Bartolini, P. Ciaccia, and M. Patella. Efficient sort-based skyline
evaluation. TODS, 33(4):31, 2008.

[6] C. Beecks, I. Assent, and T. Seidl. Content-based multimedia retrieval
in the presence of unknown user preferences. Advances in Multimedia
Modeling, pages 140–150, 2011.

[7] K. S. Bøgh, S. Chester, and I. Assent. Work-efficient parallel skyline
computation for the gpu. VLDB, 8(9):962–973, 2015.

[8] K. S. Bøgh, S. Chester, D. Šidlauskas, and I. Assent. Template skycube
algorithms for heterogeneous parallelism on multicore and gpu archi-
tectures. In Proceedings of the 2017 ACM International Conference
on Management of Data, pages 447–462. ACM, 2017.

[9] S. Borzsony, D. Kossmann, and K. Stocker. The skyline operator. In
Proc. ICDE, pages 421–430. IEEE, 2001.

[10] S. Chester, M. L. Mortensen, and I. Assent. On the suitability of skyline
queries for data exploration. In EDBT/ICDT, pages 161–166, 2014.

[11] S. Chester, D. Šidlauskas, I. Assent, and K. S. Bøgh. Scalable paral-
lelization of skyline computation for multi-core processors. In Proc.
ICDE, pages 1083–1094. IEEE, 2015.

[12] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with presorting:
Theory and optimizations. In Intelligent Information Processing and
Web Mining, pages 595–604. Springer, 2005.

[13] J. Draper, J. Chame, M. Hall, C. Steele, T. Barrett, J. LaCoss,
J. Granacki, J. Shin, C. Chen, C. W. Kang, et al. The architecture
of the diva processing-in-memory chip. In Proceedings of the 16th in-
ternational conference on Supercomputing, pages 14–25. ACM, 2002.

[14] M. Drumond, A. Daglis, N. Mirzadeh, D. Ustiugov, J. Picorel, B. Fal-
safi, B. Grot, and D. Pnevmatikatos. The mondrian data engine. In
Proc. ISCA, pages 639–651. ACM, 2017.

[15] P. Godfrey, R. Shipley, and J. Gryz. Algorithms and analyses for
maximal vector computation. VLDB, 16(1):5–28, 2007.

[16] M. Gokhale, B. Holmes, and K. Iobst. Processing in memory: The
terasys massively parallel pim array. Computer, 28(4):23–31, 1995.

[17] Q. Guo, N. Alachiotis, B. Akin, F. Sadi, G. Xu, T. M. Low, L. Pileggi,
J. C. Hoe, and F. Franchetti. 3d-stacked memory-side acceleration:
Accelerator and system design. In WoNDP, 2014.

[18] H. Köhler, J. Yang, and X. Zhou. Efficient parallel skyline processing
using hyperplane projections. In Proceedings of the 2011 ACM SIG-
MOD International Conference on Management of data, pages 85–96.
ACM, 2011.

[19] H.-P. Kriegel, M. Renz, and M. Schubert. Route skyline queries: A
multi-preference path planning approach. In Proc. ICDE, pages 261–
272. IEEE, 2010.

[20] D. Lavenier, J. F. Roy, and D. Furodet. DNA mapping using processor-
in-memory architecture. In Proc. BIBM, pages 1429–1435. IEEE,
2016.

[21] J. Lee and S.-w. Hwang. Bskytree: scalable skyline computation using
a balanced pivot selection. In Proc. EDBT, pages 195–206. ACM,
2010.

[22] K. C. Lee, B. Zheng, H. Li, and W.-C. Lee. Approaching the skyline
in z order. In Proc. VLDB, pages 279–290. VLDB Endowment, 2007.

[23] L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim. Graphpim:
Enabling instruction-level pim offloading in graph computing frame-
works. In High Performance Computer Architecture (HPCA), 2017
IEEE International Symposium on, pages 457–468. IEEE, 2017.

[24] A. Nasridinov, J.-H. Choi, and Y.-H. Park. A two-phase data space
partitioning for efficient skyline computation. Cluster Computing,
20(4):3617–3628, 2017.

[25] S. Park, T. Kim, J. Park, J. Kim, and H. Im. Parallel skyline computa-
tion on multicore architectures. In Proc. ICDE, pages 760–771. IEEE,
2009.

[26] Y. Park, J.-K. Min, and K. Shim. Efficient processing of skyline
queries using mapreduce. IEEE transactions on knowledge and data
engineering, 29(5):1031–1044, 2017.

[27] P. Siegl, R. Buchty, and M. Berekovic. Data-centric computing fron-
tiers: A survey on processing-in-memory. In Proceedings of the Second
International Symposium on Memory Systems, pages 295–308. ACM,
2016.

[28] D. Skoutas, D. Sacharidis, A. Simitsis, and T. Sellis. Serving the sky:
Discovering and selecting semantic web services through dynamic
skyline queries. In Proc. ICSC, pages 222–229. IEEE, 2008.

[29] L. Song, X. Qian, H. Li, and Y. Chen. Pipelayer: A pipelined reram-
based accelerator for deep learning. In High Performance Computer
Architecture (HPCA), 2017 IEEE International Symposium on, pages
541–552. IEEE, 2017.

[30] E. Upchurch, T. Sterling, and J. Brockman. Analysis and modeling
of advanced pim architecture design tradeoffs. In Proc. SC, page 12.
IEEE Computer Society, 2004.

[31] A. Vlachou, C. Doulkeridis, and Y. Kotidis. Angle-based space parti-
tioning for efficient parallel skyline computation. In Proceedings of
the 2008 ACM SIGMOD international conference on Management of
data, pages 227–238. ACM, 2008.

[32] S. Wang, Q. Sun, H. Zou, and F. Yang. Particle swarm optimization
with skyline operator for fast cloud-based web service composition.
Mobile Networks and Applications, 18(1):116–121, 2013.

[33] L. Woods, G. Alonso, and J. Teubner. Parallel computation of skyline
queries. In Proc. FCCM, pages 1–8. IEEE, 2013.

[34] D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu, and
M. Ignatowski. Top-pim: throughput-oriented programmable process-
ing in memory. In Proc. HPDC, pages 85–98. ACM, 2014.

12

http://www.upmem.com/wp-content/uploads/2017/02/20170210_SDK_One-Pager.pdf
http://www.upmem.com/wp-content/uploads/2017/02/20170210_SDK_One-Pager.pdf

	Introduction
	Related Work
	Architecture Overview & Challenges
	Skyline Definitions
	DSky Algorithm Overview
	Parallel Radix-Select & Block Creation
	Horizontal Partition Assignment
	Spiral Partition Assignment
	DSky Main Processing Stage
	P2P Kernel

	Experimental Evaluation
	Setup Configuration
	Dataset
	Experiments & Metrics
	Run-Time Performance
	Algorithmic Efficiency & Throughput
	Scaling
	Energy Consumption

	Conclusion

